14 2. Formal Introduction to Filtering
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where 8 and A, are some time and space scales, respectively. Differential filters
can be grouped into several classes: elliptic, parabolic or hyperbolic filters. In
the framework of a generalized space-time filtering, Germano [111, 112,114]
recommends using a parabolic or hyperbolic time filter and an elliptic space
filter, for reasons of physical consistency with the nature of the Navier-Stokes
equations. It is recalled that a filter is said to be elliptic (resp. parabolic or
hyperbolic) if ¥ is an elliptic (resp. parabolic, hyperbolic) operator. Examples
are given below {117].

Time Low-Pass Filter. A first example is the time low-pass filter. The
associated inverse differential relation is :

0¢

¢p=¢+05 . (2.30)
The corresponding convolution filter is:
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It is easily scen that this filter commutes with time and space deriva-
tives. This filter is causal, because it incorporates no future information, and
therefore is applicable to real-time or post-processing of the data.

Elliptic Filter. An elliptic filter is obtained by taking:
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Tt corresponds to a second-order elliptic operator, which depends only on
space. The convolutional integral form is:
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This Riter satisfies the three previously mentionned basic properties.
Parabolic Filter. A parabolic filter is obtained taking
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1t is easily verified that the parabolic filter satistifies the three required
properties. )
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Convective and Lagrangian Filters. A convective filter is obtained by
adding a '_convective part to the parabolic filter, leading to:
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where V is an arbitrary velocity field. This filter is linear and constant
preserving, but commutes with derivatives if and only if V is uniform. A
Lagrangian filter is obtained when V is taken equal to u, the velocity field.
In this last case, the commutation property is obviously lost.

(2.36)

2.1.5 Three Classical Filters for Large-Eddy Simulation

Three convolution filters are ordinarily used for performing the spatial scale

separation. For a cutoff length A, in the mono-dimensional case, these are
written: )

— Box or top-hat filter:
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0 otherwise
G(k) = b%ink(%%m {2.38)

The convolution kernel G and the transfer function G are represented in
Figs. 2.1 and 2.2, respectively.
— Gaussian filter: -
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in which ~ is a constant generally taken to be equal to 6. The convolution
kernel G and the transfer function G are represented in Figs. 2.3 and 2.4,
respectively. i

— Spectral or sharp cutoff filter:
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0 otherwise
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w
= i
A

The convolution kernel G and the transfer function G are rei)resented in
Figs. 2.5 and 2.6, pectively.
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Fig. 2.1. Top-hat filter. Convolution kernel in the physical space normalized by A. Fig. 2.3. Gaussian filter. Convolution kernel in the physical space normalized by
A : .
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Fig. 2.2. Top-hat filter. Associated transfer function. ;
Fig. 2.4. Gaussian filter. Associated transfer function.
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Fig. 2.5. Sharp cutoff filter. Convolution kernel in the physical space.
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Fig. 2.6. Sharp cutoff filter. Associated transfer function.
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It is trivially verified that the first two filters are positive while the sharp
cutoff filter is not. The top-hat filter is local in the physical space (its support

 is compact) and non-local in the Fourier space, inversely from the sharp cutoff

filter, which is local in the spectral space and non-local in the physical space.

As for the Gaussian filter, it is non-local both in the spectral and physical

spaces. Of all the filters presented, only the sharp cutoff has the property:
G@.. G=8"=8 ;
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and is therefore idempotent in the spectral space. Lastly, the top-hat and

Gaussian filters are said to be smooth because there is a frequency overlap
between the quantities W and u’.

2.2 Extension to the Inhomogeneous Case

2.2.1 General

In the above explanations, it was assumed that the filter is homogeneous
and isotropic. These assumptions are at time too restrictive for the resulting
conclusions to be usable. For example, the definition of bounded fluid domains
forbids the use of filters that are non-local in space, since these would no
longer be defined. The problem then arises of defining filters near the domain
boundaries. At the same time, there may be some advantage in varying the
filter cutoff length to adapt the structure of the solution better and thereby
ensure optimum gain in terms of reducing the number of deglees of freedom
in the system to be resolved.

From relation {2.1), we get the followmg general form of the commutation
error for a convolution filter G{y, A(x,t)) on a domain  [105,121]:
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The first term of the right hand side of (2.43) can be expanded as
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where n(£) is the outward unit normal vector to the boundd,ry of Q, 89,
yielding



